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Figure 1: An overview of an LLM-based pipeline for diagnosing students’ answers to math word problems. Our pipeline first
generates a rubric and compares it to students’ answers to determine their mastery.

ABSTRACT
Personalized feedback, tailored to students’ needs and prior knowl-
edge, is essential for fostering mathematical problem-solving skills.
However, personalized feedback is often limited to one-to-one tutor-
ing or small classrooms as it requires instructors’ in-depth diagnosis
of cognitive processes employed in students’ answers. We propose
a large language model (LLM) pipeline that diagnoses students’
problem-solving skills from their answers at scale in elementary
school math word problems. Based on prior literature and an inter-
view with a math education expert, we developed PERC, a frame-
work composed of four problem-solving stages that students can
follow: Parse, Extract, Retrieve, and Combine. The framework fa-
cilitates diagnosis by externalizing students’ step-by-step problem-
solving processes and allowing our pipeline to analyze each stage
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individually. Our LLM pipeline diagnoses each stage by (1) generat-
ing rubrics and (2) comparing students’ answers with the rubrics.
We fine-tuned our LLM pipeline with 71 math problem-rubric pairs
and 128 problem-answer-grade triplets collected from elementary
school students. We evaluated our pipeline’s diagnosis accuracy
against vanilla GPT-3.5 and vanilla GPT-4 with automatic and ex-
pert evaluations. The results showed the potential of our approach
in improving the end-to-end diagnosis accuracy of LLMs, and expert
evaluation provided specific aspects that should be improved.
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1 INTRODUCTION
Although online-based learning (e.g., MOOCs) has significantly
improved accessibility to learning mathematical problem-solving
[1], the uniform guidance and feedback provided by online plat-
forms and technologies limit the effectiveness of learning (e.g.,
showing only solutions without explanations adaptive to students’
answers) [14]. Compared to these one-size-fits-all scaffolds, feed-
back personalized to students’ different prior knowledge can elicit
the best learning effects and experiences [11, 20].

However, it has been challenging to scale personalized feedback
to online-based learning. Personalized feedback involves a fine-
grained diagnosis of each student’s skills and adaptive suggestions
for improvement [11, 19]. The diagnosis requires in-depth com-
prehension of students’ solutions written in natural language and
mathematical expressions, making it heavily reliant on teachers’
expertise and manual effort [6]. Consequently, the personalized
diagnosis remains feasible only in small classroom settings.

We investigate the utility of large language models (LLMs) for
diagnosis at scale. Recent work highlights the exceptional perfor-
mance of LLMs in understanding and solving mathematical prob-
lems [7]. By utilizing such capabilities, we explore using LLMs to
provide tailored diagnoses of students’ problem-solving skills at
scale. We anticipate that, through clear evaluation rubrics for diag-
nosis (i.e., a list of correct answers for a problem), LLM can leverage
its natural language understanding and reasoning to evaluate stu-
dents’ answers [8]. In this project, we focus on diagnosing the
problem-solving skills of elementary school math word problems.

We developed a problem-solving framework and an LLMpipeline
to scaffold and diagnose four primary skills inmathematical problem-
solving. First, we designed a PERC frameworkwith parsing, extracting,
retrieving, and combining stages based on prior literature on problem-
solving processes [9, 13, 15] and an expert interview about elemen-
tary school education. The framework emphasizes the skills to
digest textual information, which contemporary young students of-
ten struggle with. Then, we developed a two-stage LLM pipeline to
provide personalized diagnoses for students’ math problem-solving
skills at scale. Using GPT-3.5, our pipeline first generates the PERC
rubrics for the given math word problem and uses them to diagnose
students’ mathematical problem-solving competencies based on
their answers. To further enhance the accuracy of the pipeline, we
collected and fine-tuned GPT-3.5 with a dataset of 71 problems, 71
expert-generated rubrics for each stage, and 128 responses from
elementary school students with expert diagnosis results.

To assess the efficacy of our LLM pipeline, we conducted techni-
cal and expert evaluations using vanilla GPT-3.5 and GPT-4 models
as baselines. We observed that the rubric generation module effec-
tively replicates mathematical expressions used by experts but is
weak at including all problem-solving details compared to GPT-4.
Experts remarked that our pipeline generates satisfactory rubrics
and diagnoses, but the rubrics should avoid including the knowl-
edge that students have not learned. We discuss the potential of
using LLMs for math diagnosis at scale and future directions for
improvement.

This paper makes the following contributions:

• PERC (Parse-Extract-Retrieve-Combine) framework that can
scaffold elementary school students to tackle math word

problems and externalize their problem-solving process step-
by-step.

• An LLM pipeline that can diagnose students’ mathematical
problem-solving skills based on the PERC framework.

2 FRAMEWORK DEVELOPMENT
We reviewed problem-solving stages studied in literature and inter-
viewed a math education expert to identify important stages and
skills in elementary school math problem-solving. We reorganized
the insights and findings into the PERC framework.

2.1 Existing Problem-Solving Stages
One of the most commonly used frameworks proposed to incorpo-
rate comprehensive problem-solvingmethodologies inmathematics
was suggested by Polya [13]. He identified four stages to enhance
problem-solving strategy: (1) understanding the problem, (2) de-
vising a plan, (3) carrying out the plan, and (4) looking back. This
framework suggests devising a plan before the computations to
approach problems thoughtfully and systematically.

Polya’s framework has influenced many other researchers to pro-
pose new approaches that utilize the four-stage problem-solving
strategy in various ways [4, 10, 16]. For example, Goulet et al. high-
light the need to establish links between the explicit problem con-
tent and students’ knowledge while devising a plan [3]. Schoen-
feld concluded four important categories in solving problems: (1)
resources, (2) heuristics, (3) control, and (4) belief systems [15].
Similarly, Krulik and Rudnick further specified the set of heuristics
to be successful in all levels of problem-solving: (1) read, (2) explore,
(3) select a strategy, (4) solve, and (5) look back and extend [9].
It was found that utilizing such approaches to give step-by-step
guidelines in problem-solving significantly improves learning in
mathematics [2, 16, 18], especially for students with a low level of
achievement [10].

2.2 Domain Expert Interview
To understand how the previous frameworks can be applied in the
real-world setting of elementary-level education, we conducted
a semi-structured interview with a domain expert who has been
working in mathematics education for 30 years. We asked questions
about (1) the characteristics of elementary school students, (2) how
Polya’s framework can be improved, (3) how teachers evaluate stu-
dents’ mathematics skills, and (4) what to consider while designing
the LLM to evaluate students’ answers.

The expert expressed the need to adapt Polya’s framework for
elementary-level students. Besides, the expert noted that many
elementary school students struggle to read the given problem cor-
rectly, thus, math education should also focus on comprehension
before plan to proceed to computation. The expert emphasized
the severity of this issue among the current generation of elemen-
tary school students who tend to consume media passively, such as
videos. This finding aligns with previous studies that explored math-
ematical problem-solving according to Polya’s four-stage frame-
work [12, 23]. They found that elementary school students experi-
enced difficulties in solving mathematical problems, especially in
comprehension of the problem [23], which can cascade into errors
in the following stages.
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2.3 PERC Framework
Based on the literature review and interview findings, we propose a
Parse-Extract-Retrieve-Combine, PERC framework for mathematics
education of elementary school students. We reorganized existing
frameworks into the PERC framework to focus on comprehension
skills in problem-solving. This framework can serve as a lens to
analyze the information digestion process in math and a template
for collecting students’ in-depth problem-solving processes at scale.

The PERC framework comprises four stages:

• Parse: Parse the problem in mathematical units to identify
key information and list requirements.

• Extract: Extract the mathematical expression of each parsed
unit of the problem to construct a concrete plan.

• Retrieve: Retrieve external mathematical information and
formulas that are not present in the problem but are needed
to solve the problem.

• Combine: Combine the internal information from Extract
stage and external information from Retrieve stage to sys-
tematically solve the problem according to the plan.

The framework can guide elementary school students to ap-
proach problems step-by-step and externalize their problem-solving
process. For example, students can be given questions correspond-
ing to the four stages and structurally work through each stage to
solve a problem. The example scenario with the PERC framework
is illustrated in Figure 2.

3 PERC DATASET
While PERC can scaffold students to tackle problems step-by-step,
we aim to push it further by diagnosing students’ answers to each
stage and giving personalized feedback with LLMs. To develop and
evaluate our LLM pipeline, we constructed a PERC dataset based
on 71 problem-rubric pairs and 128 problem-answer-grade triplets
based on the PERC framework (Figure 2).

First, we collected a set of 71 mathematical problems with diverse
difficulties concerning K3-6 public curriculum topics in South Korea
(e.g., arithmetics, unit conversion). We asked two math educators,
each with over 20 years of teaching experience, to collaboratively
make the rubrics for the problems. The rubric described the ideal
response for each PERC stage.

Then, we recruited 55 K3, 45 K4, 46 K5, and 39 K6 students and
asked them to solve the problems based on the PERC framework
on paper worksheets. Then, we manually transcribed the problem-
answer pairs into LATEXformat to facilitate data-feeding to LLMs.We
excluded students’ answers that were unrecognizable by humans.
As a result, we compiled 128 problem-answer pairs.

With the collected 128 problem-answer pairs, we recruited 64
experienced math teachers to grade the answers. They compared
students’ answers with the rubrics and gave a score of 1 if the
answer was correct or 0 otherwise for each PERC skill. Each answer
was graded only by one teacher.

4 DIAGNOSING PERC AT SCALE
We introduce an LLM-based pipeline to automate the diagnosis of
the PERC framework. We also report a rudimentary evaluation of
our pipeline.

Model Parse Extract Retrieve Combine
BLEU
(Textual
similarity)

Ours 0.59 0.12 0.00 0.23
vanila gpt-3.5 0.42 0.06 0.00 0.16
vanila gpt-4 0.47 0.03 0.00 0.10

Embedding
similarity

Ours 0.09 0.25 0.38 0.12
vanila gpt-3.5 0.16 0.28 0.45 0.16
vanila gpt-4 0.13 0.28 0.42 0.17

Table 1: Evaluation Results of PERC Rubric Generation Mod-
ule

Model Parse Extract Retrieve Combine
Ours 92.59 88.89 81.48 96.30
baseline (vanila gpt-3.5) 88.89 81.48 77.78 96.30
baseline (vanila gpt-4) 85.19 81.48 77.78 85.19

Table 2: Evaluation Results of Student Answer Diagnostic
Module

4.1 LLM Pipeline
We implemented an LLM pipeline to diagnose student responses to
the PERC framework (Figure. 1). The LLM pipeline consists of three
components: 1) a PERC rubric generation module, 2) an answer
diagnosis module, and 3) a feedback generation module. We chose a
multi-staged design for the pipeline because the division of work is
known to be effective in improving the accuracy and controllability
of LLMs [22].

4.1.1 PERC Rubric Generation Module. This module receives a
math word problem and generates the corresponding PERC rubric
for grading. The module ensures scalability by automatically creat-
ing the PERC rubric for a given problem. By guiding LLMs to solve
mathematical problems following the PERC stages, we maximize
the inferential capabilities of LLMs, akin to effective prompting
techniques such as chain of thought [21]. To develop this module,
we gave explanations about PERC as instructions and fine-tuned
the GPT-3.5-0125 model with 80% of the problem-rubric pairs in
the PERC dataset.

4.1.2 Student Answer Diagnosis Module. This module receives a
math word problem, the PERC rubric generated by the PERC Rubric
Generation Module, and a student’s answer. The module diagnoses
the student’s mathematical competency and provides binary judg-
ments (i.e., 1 for pass and 0 for fail) for each PERC competency. We
developed this module by fine-tuning the GPT-3.5-0125 model with
80% of the problem-answer-grade triplets.

4.1.3 Feedback Module. The last module provides feedback based
on the diagnosis result. There can be 16 combinations of diagnosis
results (i.e., 0 or 1 for each PERC). According to the combination, our
pipeline gives feedback predefined by the math education expert.

4.2 Technical Evaluation
We conducted technical evaluations of the PERC Rubric Generation
Module and the Student Answer Diagnosis Module by comparing
them with the vanilla gpt-3.5-turbo-0125 1 and gpt-4-0613 2 with
4-shots examples as baseline with the remaining 20% of the dataset.

1https://platform.openai.com/docs/models/gpt-3-5-turbo
2https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
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Figure 2: An example data point of the PERC dataset. The dataset comprises 71 unique math word problems, expert-generated
rubrics (i.e., exemplary answers) for each problem, 128 students’ answers, and experts’ grading for each PERC skill.

Model Parse Extract Retrieve Combine
Ours 45 33 27 28
baseline (vanila gpt-3.5) 38 34 26 29
baseline (vanila gpt-4) 42 38 26 39

Table 3: Expert Evaluation Results

4.2.1 PERC Rubric Generation Module Evaluation. We evaluated
textual and semantic similarities between the module-generated
rubrics and expert-generated ones for each PERC (Table 1). We
looked into both similarities to reflect the preciseness in mathe-
matical expressions and the flexibility of natural language in math
problem-solving. We chose BLEU for the metric of textual similarity
to count exact word matches, and OpenAI’s embedding model 3 for
semantic similarity to allow interchangeable words and expressions.

We found that the BLEU scores were high for Parse, reflect-
ing the effectiveness in identifying key information from given
math problems. In the Retrieve phase, although the textual simi-
larity yielded a score of 0, the high embedding similarity suggests
meaningful retrieval of external information necessary for problem-
solving. Furthermore, our model exhibited higher textual similarity
than the baseline, yet lower embedding similarity. This discrepancy
implies that while our model effectively captured the textual repre-
sentation of mathematical concepts, it struggled to capture their
semantic meaning.

4.2.2 Student Answer Diagnosis Module Evaluation. We compared
the accuracy of the model’s binary (0 or 1) diagnosis results for
each PERC against the experts’ grades. The results, depicted in
Table 2, demonstrate that our pipeline outperformed baseline mod-
els in accuracy according to expert evaluation, which indicates its
effectiveness in evaluating mathematical competencies.

4.3 Expert Evaluation
For PERC Rubric GenerationModule, we conducted qualitative expert
evaluations on the generated rubrics. We asked a mathematics
education expert to evaluate the PERC-specific rubrics generated
by the module and those generated by vanilla GPT-3.5 and GPT-4.
The evaluation was conducted blindly to ensure that the expert was
unaware of the type of output being assessed. The rubrics were
3https://platform.openai.com/docs/guides/embeddings/embeddings

scored on a scale of 1 to 3, with 1 indicating error or irrelevant
content, 2 for correct but limited for an ideal rubric, and 3 for
satisfactory rubrics. In Table 3, we report cumulative scores of the
PERC rubrics generated by the three models for 15 math problems
in the PERC dataset. The expert concluded that our model for Parse
is satisfactory, but refinements are needed for Extract, Retrieve,
and Combine stages to align more closely with the student levels
and curriculum. Specifically, the expert suggested restricting these
stages to the learning materials of the target grade level.

5 FUTUREWORK
We propose several directions for future work. First, we need to
confirm the efficacy of the PERC framework in improving students’
math problem-solving skills. Acknowledging that a single interview
is insufficient, we will conduct interviews with more domain ex-
perts. Furthermore, we will run empirical studies to verify whether
the framework can improve students’ information processing ability
compared to the answer templates from existing research [10]. We
will conduct longitudinal comparative studies to measure students’
perceived efficacy, learning gain, and metacognition.

We will advance our LLM pipeline to improve the PERC rubric
generation and achieve fine-grained diagnosis. As pointed out in the
expert evaluation, we will improve the PERC Rubric Generation Mod-
ule by preventing it from using knowledge beyond the curriculum
level of problems. We will also advance the Student Answer Diagno-
sis Module to generate finer-grained scores (i.e., rational numbers
instead of binary classification). This involves decomposing the
knowledge units in the PERC rubrics, comparing them with stu-
dent answers, and computing coverage. Fine-grained grading can
improve the explainability of diagnosis and personalized feedback.

Lastly, we will publicly release our PERC dataset, consisting of
math word problems, PERC rubrics, student answers, and expert
grading. The dataset will serve as a benchmark for evaluating the
accuracy of automated mathematical skill diagnosis [5], a train-
ing dataset for math-reasoning tasks [21], and real-world data for
learning analytics [17].
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